Transport and Attenuation of an Artificial Sweetener and Six Pharmaceutical Compounds in a Sequenced Wetland-Steel Slag Wastewater Treatment System

Author:

Hussain Syed I.1ORCID,Ptacek Carol J.1,Blowes David W.1,Liu YingYing12ORCID,Wootton Brent C.3,Balch Gordon3,Higgins James4

Affiliation:

1. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

3. Centre for Alternative Wastewater Treatment, Fleming College, Lindsay, ON K9V 5E6, Canada

4. Environmental Technologies Development Corporation, Mississauga, ON L5K 2C9, Canada

Abstract

The occurrence of pharmaceutically active compounds (PhACs), nutrients, and an artificial sweetener acesulfame in wastewater, and subsequent removal in an engineered system comprising aerobic wetland, anaerobic wetland, and steel slag cells, were investigated. The PhACs evaluated in this study covered a range of octanol–water partition coefficients (log Kow = 0.07–2.45) and acid dissociation constants (pKa = 1.7–13.9) and included carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen. The mean flow rate in the system was 0.89 m3 day−1 (0.02 to 4.27 m3 day−1), representing a hydraulic retention time of 5 days. The removal efficiencies of PO4-P, NH3-N, and cBOD5 in the treatment system were >99, 82, and 98%. The removal efficiencies for the PhACs and acesulfame were classified into four groups, including those that were (a) efficiently removed (caffeine by >75%); (b) moderately removed (ibuprofen by 50–75%); (c) poorly removed (sulfamethoxazole and naproxen by 25–50%); and (d) recalcitrant (carbamazepine and acesulfame by <25%). Variability in concentrations and treatment efficiencies was observed in different sampling events, which may be due to variations in input concentrations or changes in the flow rate. The addition of a steel slag cell increased the overall removal efficiency of the studied compounds, except for carbamazepine.

Funder

Natural Sciences and Engineering Research Council

Ontario Research Fund—Research Excellence Program

the Lake Simcoe Region Conservation Authority

the Lake Simcoe Clean-up Fund of Environment Canada

the Ontario Ministry of the Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3