Steel/Slag Interface Behavior under Multifunction Electromagnetic Driving in a Continuous Casting Slab Mold

Author:

Sun Xiaohui,Li Bin,Lu Haibiao,Zhong Yunbo,Ren Zhongming,Lei Zuosheng

Abstract

The transient numerical model combined with the volume of fluid (VOF) approach is employed to investigate the steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Here, electromagnetic stirring (EMS) and electromagnetic braking (EMBr), respectively, are chosen as flow multifunction control technologies in the upper and lower areas of the mold. The computational models are validated with measurement results. The results show that multifunction electromagnetic driving changes the flow pattern, which has the potential to simultaneously meet the requirements of the steel flow in the regions above and below the nozzle, ensuring the uniformity and activity of the molten steel in the upper region of the mold and avoiding the excessive depth of the impinging jet. After EMS, the steel forms a deflected circulation flow at the steel/slag interface, and the surface velocity distribution is more uniform. EMBr still has the function of stabilizing the meniscus when multifunction electromagnetic driving is applied. Taking wave height and wave amplitude as evaluation criteria, the influence of EMS and EMBr on the steel/slag interface can be evaluated and controlled to some extent by observing the key points.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3