Modeling of Lake Malombe Annual Fish Landings and Catch per Unit Effort (CPUE)

Author:

Makwinja RodgersORCID,Mengistou Seyoum,Kaunda Emmanuel,Alemiew TenaORCID,Phiri Titus Bandulo,Kosamu Ishmael Bobby MphangweORCID,Kaonga Chikumbusko Chiziwa

Abstract

Forecasting, using time series data, has become the most relevant and effective tool for fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been commonly used to predict the general trend for fish landings with increased reliability and precision. In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and both were non-stationary. The first-order differencing was applied to transform the non-stationary data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led to the identification and construction of ARIMA models, suitable in explaining the time series and forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of 2725.243 metric tons and CPUE of 0.097 kg/h by 2024.

Funder

Federal Democratic Republic of Ethiopia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3