The Power of Travel Search Data in Forecasting the Tourism Demand in Dubai

Author:

Rashad Ahmed ShoukryORCID

Abstract

Tourism plays an important economic role for many economies and after the COVID-19 pandemic, accurate tourism forecasting become critical for policymakers in tourism-dependent economies. This paper extends the growing literature on the use of internet search data in tourism forecasting through evaluating the predictive ability of Destination Insight with Google, a new Google product designed to monitor tourism recovery after the COVID-19 pandemic. This paper is the first attempt to explore the forecasting ability of the new Google data. The study focuses on the case of Dubai, given its status as a world-leading tourism destination. The study uses time series models that account for seasonality, trending variables, and structural breaks. The study uses monthly data for the period of January 2019 to April 2022. We explore whether the internet travel search queries can improve the forecasting of tourist arrivals to Dubai from the UK. We evaluate the accuracy of forecasts after incorporating the Google variable in our model. Our findings suggest that the new Google data can significantly improve tourism forecasting and serves as a leading indicator of tourism demand.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3