The Study of Drought in Future Climate Scenarios in the Huang-Huai-Hai Region

Author:

Jiang Gengmin,Gu Xiaobo,Zhao Dongsheng,Xu Jun,Yang Changkun,Wang Siyu,Li Yuying,Li Bai-LianORCID

Abstract

In the context of global warming, agricultural production and social and economic development are significantly affected by drought. The future change of climate conditions is uncertain; thus, it is of great importance to clarify the aspects of drought in order to define local and regional drought adaptation strategies. In this study, the meteorological data from 1976 to 2005 was used as a historical reference, and nine Global Climate Models (GCMs), downscaling to meteorological stations from 2039 to 2089, were used as future climate data. Based on Penman–Monteith, the reference crop Evapotranspiration (ET0) and Standardized Precipitation Evapotranspiration Index (SPEI) of the reference crop in three emission scenarios of RCP2.6, RCP4.5, and RCP8.5, under future climate conditions, were calculated. A non-parameter Mann–Kendall trend test was performed on temperature, precipitation, ET0, and SPEI to analyze the drought spatiotemporal distribution traits under upcoming climate scenarios. The results showed that, under future climate conditions, SPEI values in most areas of the Huang-Huai-Hai region would continuously increase year by year, and drought would be alleviated to some extent at the same pace. However, with the increase of greenhouse gas concentration in the emission scenarios, SPEI values continued to decline. In the RCP8.5 scenario, the area of severe drought was large. To sum up, in the future climate scenario, the degree of drought in the Huang-Huai-Hai region will be alleviated to some extent with the increase of rainfall, but with the increase of greenhouse gas concentration, the degree of drought will be further intensified, posing a huge challenge to agricultural water use in the region. This study provides a theoretical foundation for alleviating drought in the Huang-Huai-Hai region in future climate scenarios.

Funder

Key Research and Development Project of Henan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

1. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX)

2. Climatological Drought Analyses and Projection Using SPI and PDSI: Case Study of the Arkansas Red River Basin

3. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change;Field,2012

4. Drought as a natural hazard: Concepts and definitions;Wilhite,2000

5. Assessment of global drought propensity and its impacts on agricultural water use in future climate scenarios

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3