Visual Features Assisted Robot Localization in Symmetrical Environment Using Laser SLAM

Author:

Ge Gengyu,Zhang Yi,Jiang Qin,Wang Wei

Abstract

Localization for estimating the position and orientation of a robot in an asymmetrical environment has been solved by using various 2D laser rangefinder simultaneous localization and mapping (SLAM) approaches. Laser-based SLAM generates an occupancy grid map, then the most popular Monte Carlo Localization (MCL) method spreads particles on the map and calculates the position of the robot by a probabilistic algorithm. However, this can be difficult, especially in symmetrical environments, because landmarks or features may not be sufficient to determine the robot’s orientation. Sometimes the position is not unique if a robot does not stay at the geometric center. This paper presents a novel approach to solving the robot localization problem in a symmetrical environment using the visual features-assisted method. Laser range measurements are used to estimate the robot position, while visual features determine its orientation. Firstly, we convert laser range scans raw data into coordinate data and calculate the geometric center. Secondly, we calculate the new distance from the geometric center point to all end points and find the longest distances. Then, we compare those distances, fit lines, extract corner points, and calculate the distance between adjacent corner points to determine whether the environment is symmetrical. Finally, if the environment is symmetrical, visual features based on the ORB keypoint detector and descriptor will be added to the system to determine the orientation of the robot. The experimental results show that our approach can successfully determine the position of the robot in a symmetrical environment, while ordinary MCL and its extension localization method always fail.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Gating with Hybrid Receptive Field for Robot Visual Localization;International Journal of Computational Intelligence Systems;2024-05-27

2. LIDAR-based SLAM system for autonomous vehicles in degraded point cloud scenarios: dynamic obstacle removal;Industrial Robot: the international journal of robotics research and application;2024-04-10

3. Multiparticle Kalman filter for object localization in symmetric environments;Expert Systems with Applications;2024-03

4. Localization and Mapping for Self-Driving Vehicles: A Survey;Machines;2024-02-07

5. Mobile Robot Self-localization and Table Tennis Detection Via RGB-D Camera and YOLOv8;2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE);2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3