Biofloc Systems for Sustainable Production of Economically Important Aquatic Species: A Review

Author:

Mugwanya MuziriORCID,Dawood Mahmoud A. O.,Kimera Fahad,Sewilam Hani

Abstract

The increasing global population has led to an increase in food demand; consequently, aquaculture is one of the food production sectors that has offered opportunities to alleviate hunger, malnutrition, and poverty. However, the development of a sustainable aquaculture industry has been hindered by the limited availability of natural resources as well as its negative impact on the surrounding environment. Hence, there is an urgent need to search for better aquacultural production systems that, despite their high productivity and profitability, utilize fewer resources such as water, energy, land, and capital in conjunction with a negligible impact on the environment. Biofloc technology (BFT) is one of the most exciting and promising sustainable aquaculture systems; it takes into account the intensive culture of aquatic species, zero water exchange, and improved water quality as a result of beneficial microbial biomass activity, which, at the same time, can be utilized as a nutritious aquaculture feed, thus lowering the costs of production. Furthermore, BFT permits the installation of integrated multi-trophic aquaculture (IMTA) systems in which the wastes of one organism are utilized as feed by another organism, without a detrimental effect on co-cultured species. This review, therefore, highlights the basics of BFT, factors associated with BFT for the successful production of aquatic species, the significance of this food production system for the sustainable production of economically important aquatic species, its economic aspects, drawbacks, limitations, and recommended management aspects for sustainable aquaculture.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3