Deposition of Boron-Doped Thin CVD Diamond Films from Methane-Triethyl Borate-Hydrogen Gas Mixture

Author:

Polushin Nikolay Ivanovich,Laptev Alexander Ivanovich,Spitsyn Boris Vladimirovich,Alexenko Alexander Evgenievich,Polyansky Alexander Mihailovich,Maslov Anatoly LvovichORCID,Martynova Tatiana Vladimirovna

Abstract

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boron Doping in Next-Generation Materials for Semiconductor Device;Characteristics and Applications of Boron;2022-10-26

2. Radiation-stimulated adsorption processes on the surface of beryllium oxide;Chimica Techno Acta;2022-01-28

3. Certification of diamond HPHT-plates for their use as substrates for CVD-synthesis;IOP Conference Series: Materials Science and Engineering;2021-02-01

4. Fourier-transform infrared spectroscopy for analysis of diamond materials of different origin;IOP Conference Series: Materials Science and Engineering;2021-02-01

5. Silicon substrate surface modification with nanodiamonds for CVD-synthesis of polycrystalline diamond;IOP Conference Series: Materials Science and Engineering;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3