Simulation on an Advanced Double-Sided Cooling Flip-Chip Packaging with Diamond Material for Gallium Oxide Devices

Author:

Guan He1ORCID,Wang Dong1,Li Wentao1,Liu Duo1,Deng Borui1,Qu Xiang1

Affiliation:

1. School of Microelectronics, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Gallium oxide (Ga2O3) devices have shown remarkable potential for high-voltage, high-power, and low-loss power applications. However, thermal management of packaging for Ga2O3 devices becomes challenging due to the significant self-heating effect. In this paper, an advanced double-sided cooling flip-chip packaging structure for Ga2O3 devices was proposed and the overall packaging of Ga2O3 chips was researched by simulation in detail. The advanced double-sided cooling flip-chip packaging structure was formed by adding a layer of diamond material on top of the device based on the single-sided flip-chip structure. With a power density of 3.2 W/mm, it was observed that the maximum temperature of the Ga2O3 chip with the advanced double-sided cooling flip-chip packaging structure was 103 °C. Compared with traditional wire bonding packaging and single-sided cooling flip-chip packaging, the maximum temperature was reduced by about 12 °C and 7 °C, respectively. When the maximum temperature of the chip was controlled at 200 °C, the Ga2O3 chip with double-sided cooling packaging could reach a power density of 6.8 W/mm. Finally, by equipping the top of the package with additional water-cooling equipment, the maximum temperature was reduced to 186 °C. These findings highlight the effectiveness of the proposed flip-chip design with double-sided cooling in enhancing the heat dissipation capability of Ga2O3 chips, suggesting promising prospects for this advanced packaging structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3