Degradation Measurement and Modelling under Ageing in a 16 nm FinFET FPGA

Author:

Sobas Justin1ORCID,Marc François1

Affiliation:

1. IMS laboratory, University of Bordeaux, CNRS UMR 5218, Bordeaux INP, F-33400 Talence, France

Abstract

Most of the latest generation of integrated circuits use FinFET transistors for their performance, but what about their reliability? Does the architectural evolution from planar MOSFET to FinFET transistor have any effect on the integrated circuit reliability? In this article, we present a test bench we have developed to age and measure the degradation of 5103 ring oscillators (ROs) implemented in nine FPGAs with 16nm FinFET under different temperature and voltage conditions (Vnom≤Vstress≤1.3Vnom and 25°C≤Tstress≤115°C) close to operational conditions in order to predict reliability regarding degradation mechanisms at the transistor scale (BTI, HCI and TDDB) as realistically as possible. By comparing our initial RO measurements and the data extracted from Vivado, we will show that the performance of the nine FPGAs is between 50% and 70% of the best performance expected by Vivado. After 8000 h of ageing, we will see that the relative degradations of the RO are a maximum of 1%, which is a first indicator proving the FPGAs’ good reliability. By comparing our results with similar studies on 28 nm MOSFET FPGAs, we will reveal that 16 nm FinFET FPGAs are more reliable. To be implemented in an FPGA, an RO uses logic resources (LUT) and routing resources. We will show that degradation in the two types of resources is different. For this reason, we will present a method for separating degradations in logical and routing resources based on RO degradation measures. Finally, we will model rising and falling edge propagation time degradations in an FPGA as a function of time, temperature, voltage, signal duty cycle and resources used in the FPGA.

Funder

Bordeaux INP

Agence Innovation Defense

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3