Numerical Optimization Study of the Resistance Coefficient of U-Shaped Air Distributor

Author:

Wu Zhijing1,Wang Jinfeng1234ORCID,Xie Jing1234ORCID

Affiliation:

1. College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China

3. National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China

4. Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment, Ministry of Agriculture, Shanghai 201306, China

Abstract

In this paper, the optimization of the flow channel structure of the U-shaped air distributor is proposed. Fluent meshing was used to mesh the multipatch meshing of the original model of the grid air distributor, and then the CFD numerical simulation was carried out by using Fluent 2022R1 to obtain the internal air flow state of the air distributor flow channel. Through the orthogonal experimental design and a comprehensive analysis method, the optimal size structure for resistance performance is obtained as S = 60 mm, RL = 125 mm, L = 160 mm, D = 100 mm, the resistance coefficient of the new structure as 1.375, and the pressure loss as 56.87 Pa, by using 3D modeling software (SOLIDWORKS 2015) and Fluent. Compared with the initial scheme, the resistance coefficient and pressure loss are reduced by 3.03% and 6.29%, respectively. To summarize, the research in this paper offers a substantial contribution to the realm of energy conservation and emission abatement in ship air conditioning systems, simultaneously furnishing invaluable guidance for the design of air distributors.

Funder

Public Service Platform Project of Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3