Integrated Optimization of Train Diagrams and Rolling Stock Circulation with Full-Length and Short-Turn Routes of Virtual Coupling Trains in Urban Rail Transit

Author:

Lu Fang1ORCID,Wang Liyu12,Hu Jiangfeng1,Zhang Qi1ORCID,Li Xiaojuan3

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

2. Jiaxing Xiuzhou District Transportation Bureau, Jiaxing 314001, China

3. School of Rail Transit and Logistics, Beijing Union University, Beijing 100101, China

Abstract

The advancement of virtual coupling technology in urban rail transit has facilitated the online coupling and decoupling of trains, enabling a range of flexible transportation configurations, including various route types and adjustable formations. This study targets the fluctuating passenger demands on urban rail lines, aiming to minimize both passenger travel and operational costs. The model integrates constraints associated with virtual coupling, train operations, rolling stock circulation, and the interaction between virtually coupled trains and passenger arrivals. New decision variables are introduced to depict the train formation state under virtual coupling scenarios. An integrated optimization model for train diagrams and rolling stock circulation under virtual coupling conditions is developed, employing a genetic-simulated annealing algorithm informed by train operation simulations. A case study on an urban rail line during the morning peak examines the optimization of train diagrams for full-length and short-turn routes. Findings confirm that virtual coupling technology effectively adapts to lines with uneven passenger flow distribution, significantly enhancing the match between supply and demand, equalizing spatial and temporal traffic variations, and harmonizing the quality of passenger services with operational efficiency.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3