Simulation-Based Method for the Calculation of Passenger Flow Distribution in an Urban Rail Transit Network Under Interruption

Author:

Su GuanghuiORCID,Si BingfengORCID,Zhi KunORCID,Zhao BenORCID,Zheng Xuanchuan

Abstract

AbstractIn the extensive urban rail transit network, interruptions will lead to service delays on the current line and spread to other lines, forcing many passengers to wait, detour, or even give up their trips. This paper proposes an event-driven simulation method to evaluate the impact of interruptions on passenger flow distribution. With this method, passengers are regarded as individual agents who can obtain complete information about the current traffic situation, and the impact of the occurrence, duration, and recovery of interruption events on passengers’ travel decisions is analyzed in detail. Then, two modes are used to assign passenger paths: experience-based pre-trip mode and response-based entrap mode. In the simulation process, the train is regarded as an individual agent with a fixed capacity. With the advance of the simulation clock, the network loading is completed through the interaction of the three agents of passengers, platforms, and trains. Interruption events are considered triggers, affecting other agents by affecting network topology and train schedules. Finally, taking Chongqing Metro as an example, the accuracy and effectiveness of the model are analyzed and verified. And the impact of interruption on passenger flow distribution indicators such as inbound volume, outbound volume, and transfer volume is studied from both the individual and overall dimensions. The results show that this study provides an effective method for calculating the passenger flow distribution of an extensive urban rail transit network in the case of interruption.

Funder

National Natural Science Foundation of China

National key research and development program

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3