The Influence of the Frequency of Ultrasound on the Exhaust Gas Purification Process in a Diesel Car Muffler

Author:

Kadyrov Adil1,Bembenek Michał2ORCID,Sarsembekov Bauyrzhan1ORCID,Kukesheva Aliya1,Nurkusheva Saltanat3ORCID

Affiliation:

1. Department of Transport Technology and Logistics Systems, Karaganda Technical University, Karaganda 100027, Kazakhstan

2. Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland

3. Department of Transport Equipment and Technologies, S. Seifullin Kazakh Agro Technical Research University, Zhenis 62B, Astana 010011, Kazakhstan

Abstract

This research aimed to analyze the possibility of installing an ultrasonic emitter in an already manufactured car and to prove the possibility of cleaning the exhaust gases of an internal combustion engine through the action of an ultrasonic wave due to coagulation and examining the optimal regimes of its work. The existing theoretical solution to describe the proposed process was analyzed. A Mercedes-Benz M-Class ML 270 CDI MT car with the OM 612 DE 27 LA Diesel engine was used for the experiment. An ultrasound generator and an ultrasound emitter were connected to the muffler. The stand was connected to the car via the inlet with a rubber hose that directs the exhaust gases out of the car. The crankshaft speed of the engine was changed in the range of 750 to 1250 rpm, which corresponds to urban conditions when cars are moving in heavy traffic jams. The content of CH, CO, CO2, and O2 in the exhaust gas of the vehicle was determined as a function of the crankshaft speed without ultrasonic exposure and with ultrasonic exposure at an ultrasound frequency of 25, 28, and 40 kHz. The results of the experiment showed that the introduction of an ultrasonic emitter into the muffler reduced the smoke content of the gas, increased the oxygen content, and reduced the amount of carbon dioxide in the exhaust gases. With an increase in the ratio between the ultrasonic frequency and the angular velocity of the engine crankshaft (f/ω), the smoke content of the gas also decreased. At the maximum values of ultrasonic frequency and angular velocity of the engine crankshaft selected in the experimental studies, the minimum value of the ratio of gas smoke indicators was achieved, and the degree of purification was 10–13%. Such results correspond to the condition of optimal operation of the ultrasonic muffler, where the ratio of gas to smoke values should tend to a minimum. These results confirm the potential of using ultrasound as a method for cleaning exhaust gases and underline the need for further research in this area.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3