Using Response Surface for Searching the Nearly Optimal Parameters Combination of the Foam Concrete Muffler

Author:

Lin Teng-Hsuan,Deng JyhjengORCID,Chen Yi-ChingORCID

Abstract

A car muffler is a device to improve car noise emission. Some conventional mufflers use layers of glass fiber as a material to absorb noise. However, filling glass fiber is an environmentally unfriendly work, mainly manually filling with chop strand fiber. This research selected a composite material of glass fiber and foam concrete to replace chop strand fiber to avoid this hazard and maintain the muffler’s good noise reduction performance. A response surface methodology with a two-way factorial experimental design repeated the center point twice is performed. The density of the foamed concrete and the weight of the glass fiber is being considered in order to determine the nearly optimal combination of the values in two factors. The response variable is the loudness sensation in Sone of the noise generated from the muffler. At present, the lowest loudness sensation from the two-way factorial design is 16.6494 Sones, which occurred for a muffler with a formula combination of a density of 0.2 g/cm3 and 40 g of glass fiber. The significance of this paper is the presentation of a new application of foam concrete to the green muffler design. To the best of our knowledge, this unique area has never been tackled in the material application of concrete. We have discovered that foam concrete indeed does an excellent job in terms of noise reduction as compared with that of a market muffler.

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. A study of neurosis and occupation;Br. J. Ind. Med.,1973

2. Noise and mental performance: Personality attributes and noise sensitivity;Noise Health,2003

3. Committee on Environmental Health (1997). Noise: A hazard for the fetus and newborn. Pediatrics, 100, 724–727.

4. Design and analysis of automotive muffler;Int. J. Eng. Res. Technol.,2016

5. Noise reduction of muffler by optimal design;KSME Int. J.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3