Design Model of Null-Flux Coil Electrodynamic Suspension for the Hyperloop

Author:

Lim JungyoulORCID,Lee Chang-Young,Lee Jin-Ho,You WonheeORCID,Lee Kwan-Sup,Choi SuyongORCID

Abstract

The Hyperloop has been developed using various technologies to reach a maximum speed of 1200 km/h. Such technologies include magnetic levitation technologies that are suitable for subsonic driving. In the Hyperloop, the null-flux electrodynamic suspension (EDS) system and superconducting magnets (SCMs) can perform stable levitation without control during high-speed driving. Although an EDS device can be accurately analyzed using numerical analysis methods, such as the 3D finite element method (FEM) or dynamic circuitry theory, its 3D configurations make it difficult to use in various design analyses. This paper presents a new design model that fast analyzes and compares many designs of null-flux EDS devices for the Hyperloop system. For a fast and effective evaluation of various levitation coil shapes and arrangements, the computational process of the induced electromotive force and the coupling effect were simplified using a 2D rectangular coil loop, and the induced current and force equations were written as closed-form solutions using the Fourier analysis. Also, levitation coils were designed, and their characteristics were analyzed and compared with each other. To validate the proposed model, the analyzed force responses for various driving conditions and the changed performance trend by design variables were compared with analyzed FEM results.

Funder

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Virgin Hyperloop One Websitehttps://virginhyperloop.com

2. Hyperloop Transportation Technologies Websitehttps://www.hyperlooptt.com

3. Hyperloop Alphahttps://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf

4. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation

5. Numerical Analysis of Aerodynamic Characteristics of Hyperloop System

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3