Numerical Analysis of Aerodynamic Characteristics of Hyperloop System

Author:

Oh Jae-Sung,Kang Taehak,Ham Seokgyun,Lee Kwan-Sup,Jang Yong-Jun,Ryou Hong-Sun,Ryu JaiyoungORCID

Abstract

The Hyperloop system is a new concept that allows a train to travel through a near-vacuum tunnel at transonic speeds. Aerodynamic drag is one of the most important factors in analyzing such systems. The blockage ratio (BR), pod speed/length, tube pressure, and temperature affect the aerodynamic drag, but the specific relationships between the drag and these parameters have not yet been comprehensively examined. In this study, we investigated the flow phenomena of a Hyperloop system, focusing on the effects of changes in the above parameters. Two-dimensional axisymmetric simulations were performed in a large parameter space covering various BR values (0.25, 0.36), pod lengths (10.75–86 m), pod speeds (50–350 m/s), tube pressures (~100–1000 Pa), and tube temperatures (275–325 K). As BR increased, the pressure drag was significantly affected. This is because of the smaller critical Mach number for a larger BR. As the pod length increased, the total drag and pressure drag did not change significantly, but there was a considerable influence on the friction drag. As the pod speed increased, strong shock waves occurred near the end of the pod. At this point, the flows around the pod were severely choked at both BR values, and the ratio of the pressure drag to the total drag converged to its saturation level. At tube pressures above 500 Pa, the friction drag increased significantly under the rapidly increased turbulence intensity near the pod surface. High tube temperatures increase the speed of sound, and this reduces the Mach number for the same pod speed, consequently delaying the onset of choking and reducing the aerodynamic drag. The results presented in this study are applicable to the fundamental design of the proposed Hyperloop system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Korea Railroad Research Institute (KRRI)http://www.keca.or.kr/home/1_magazine/200912_5.pdf

2. Progress in high-speed train technology around the world

3. Hyperloop Alpha;Musk,2013

4. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation

5. Aerodynamic Simulation of Evacuated Tube Transport Trains with Suction at Tail;Pandey,2014

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3