Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width

Author:

Liu Quanhui12,Xue Yuanbo2,Ma Dan23,Li Qiang2

Affiliation:

1. Kekegai Coal Mine Shaanxi Yanchang Petr Yulin Coal Chem Co., Yulin 719000, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

3. MOE Key Laboratory of Deep Coal Resource Mining, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Groundwater inrush hazard has always been a great threat to the construction of vertical shafts in coal mines. Generally, the failure of the water-resisting coal pillar under coupled stress-seepage conditions around the vertical shaft is the main reason for the generation of the water inrush channel. In order to understand the mechanical behaviors of the water-resisting coal pillar, the strength of typical coal affected by the size and water content was investigated, and the stress sensitivity of permeability was investigated by a stress-seepage coupling test. The stress field and deformation of the water-resisting coal pillar were investigated by numerical simulation, the stability of the water-resisting coal pillars with different widths was evaluated, and the reasonable width of the coal pillars under coupled stress-seepage condition was determined. Results show that the water content and coal pillar width have a great influence on the mechanical characteristics of coal samples. Under the conditions of lower water content and larger coal sample width, the coal sample presents higher strength, smaller axial deformation, smaller permeability and porosity, and weak sensitivity to stress. The simulation results show that the boundary of the main roadway at the end of the coal pillar is dominated by tensile stress, and fractures can significantly contribute to the destruction of coal pillars. With the increase in the width of the water-resisting coal pillar, the internal damage variable, maximum tensile stress, porosity, and average water flow velocity of the coal pillar decrease, which reduces the risk of water inrush and improves the safety of the water-resisting coal pillar. An evaluation model of the reasonable width of the water-resisting coal pillar under the stress-seepage coupling was proposed, and the model was verified by the shear slip law and experimental results. This study provides theoretical and experimental guidance for the risk management of groundwater inrush disaster during the construction of vertical shafts in coal mines.

Funder

National Science Fund for Excellent Young Researchers of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3