Abstract
In this work, we propose analytical formulas for the estimation of dispersion properties and effective area of the fundamental mode of hollow-core inhibited coupling fibers with a microstructured cladding composed by a ring of dielectric tubes. The formulas are based on a model which has already been successfully applied to the estimation of confinement loss. The model takes into account the effects of the coupling of the fundamental core mode with the cladding modes in the context of the single-tube approximation. Effective index, group velocity dispersion, and effective area of the fundamental mode are estimated and compared with the results obtained from numerical simulations, by considering ten different fibers. The comparison shows a good accuracy of the proposed formulas, which do not require any tuning of fitting parameters. On the basis of the analysis carried out, a scaling law relating the effective area to the core radius is also given. Finally, the formulas give a good estimation of the same parameters of other Hollow-core inhibited coupling fibers, such as nested, ice-cream, and kagome fibers.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献