Picosecond pulsed 532 nm laser system for roughening and secondary electron yield reduction of inner surfaces of up to 15 m long tubes

Author:

Bez Elena12ORCID,Himmerlich Marcel1ORCID,Beaudou Benoit3ORCID,Reascos Portilla Ana Karen1ORCID,Wackerow Stefan4ORCID,Rimoldi Martino1ORCID,Pfeiffer Stephan1ORCID,Wiesendanger Markus5ORCID,Benabid Fetah3,Taborelli Mauro1ORCID,Abdolvand Amin4ORCID,Chiggiato Paolo1ORCID

Affiliation:

1. CERN, European Organization for Nuclear Research 1 , 1211 Geneva 23, Switzerland

2. University of Leipzig 2 , Linnéstraße 5, 04103 Leipzig, Germany

3. GLOphotonics SAS 3 , 123 Avenue Albert Thomas, 87000 Limoges, France

4. School of Science and Engineering, University of Dundee 4 , Dundee DD1 4HN, Scotland

5. Waygate Technologies Robotics 5 , Technoparkstrasse 1, 8005 Zürich, Switzerland

Abstract

Laser-induced surface structuring is a promising method to suppress electron mulitpacting in the vacuum pipes of particle accelerators. Electrons are scattered inside the rough surface structure, resulting in a low Secondary Electron Yield (SEY) of the material. However, laser processing of internal pipe surfaces with a large aspect ratio is technologically challenging in terms of laser beam guidance and focusing. We present a 532 nm ultrashort-pulse laser setup to process the inner parts of 15 m long beam vacuum tubes of the Large Hadron Collider (LHC). Picosecond pulses at a repetition rate of 200 kHz are guided through an optical fiber toward an inchworm robot traveling inside the beam pipe. The system was installed, characterized, and tested for reliability. First surface treatments achieved the required scan precision. Cu2O-dominated nano-features were observed when processing at high average laser power (5 W) and slow scanning speed (5 mm s−1) in nitrogen flow, and the maximum SEY of copper was decreased from 2.1 to 0.7.

Funder

German Federal Ministry of Education and Research

Science and Technology Facilities Council

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3