Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review

Author:

Lavelli VeraORCID,Sereikaitė JolantaORCID

Abstract

β-Carotene serves as a precursor of vitamin A and provides relevant health benefits. To overcome the low bioavailability of β-carotene from natural sources, technologies have been designed for its encapsulation in micro- and nano-structures followed by freeze-drying, spray-drying, supercritical fluid-enhanced dispersion and electrospraying. A technological challenge is also to increase β-carotene stability, since due to its multiple conjugated double bonds, it is particularly prone to oxidation. This review analyzes the stability of β-carotene encapsulated in different dried micro- and nano-structures by comparing rate constants and activation energies of degradation. The complex effect of water activity and glass transition temperature on degradation kinetics is also addressed, since the oxidation process is remarkably dependent on the glassy or collapsed state of the matrix. The approaches to improve β-carotene stability, such as the development of inclusion complexes, the improvement of the performance of the interface between air and oil phase in which β-carotene was dissolved by application of biopolymer combinations or functionalization of natural biopolymers, the addition of hydrophilic small molecular weight molecules that reduce air entrapped in the powder and the co-encapsulation of antioxidants of various polarities are discussed and compared, in order to provide a rational basis for further development of the encapsulation technologies.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference85 articles.

1. Role of vitamin A in child health and nutrition;Clin. Epidemiol. Glob. Health,2020

2. Vitamin A in resistance to and recovery from infection: Relevance to SARS-CoV2;Br. J. Nutr.,2021

3. The contribution of provitamin A biofortified cassava to vitamin A intake in Nigerian pre-schoolchildren;Br. J. Nutr.,2021

4. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease;Mol. Nutr. Food Res.,2019

5. Anti-inflammatory activity of β-carotene, lycopene and tri-n-butylborane, a scavenger of reactive oxygen species;In Vivo,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3