Abstract
Incorporation of vegetable oils through pre-emulsification has received notable attention for delivering polyunsaturated fatty acids to emulsified-type meat products. The two important influencing factors of the rheological property of composite myofibrillar protein (MP) gel are emulsion droplet size and active or inactive interaction between interface and meat proteins. Incorporation of nonmeat protein emulsion (2% protein (w/w), egg-white protein isolate (EPI), porcine plasma protein (PPP), or sodium caseinate (SC)) with different droplet sizes (nano or macro) to a model of 2% MP gel was investigated in this research. The results of drop size measurement showed that 15,000 psi homogenizing could decrease the diameter of emulsion drop from macro- to nanoscale in the range of 324.4–734.5 nm. Active fillers (PPP and EPI emulsions) with nanodroplet size did not influence the viscosity of emulsion-filled composite cold sols but caused positive filling effects on the MP gel matrix after heating, as evidenced by the density microstructure. PPP and EPI nano-emulsion-filled composite MP had a significant high storage modulus enforcement effect, which reached nearly eight times those of other treatments (p < 0.05). Similarly, the results of thermal scanning rheology and a large-deformation mechanical test showed that PPP and EPI emulsions with nanoscale droplets, other than macroscale, had the highest gel strength of heat-induced emulsion-filled composite MP gel (p < 0.05). Overall, these findings will be helpful for selecting the correct pre-emulsified protein and designing the textural properties of foods.
Funder
National Key Research Program of China
National Natural Science Foundation of China
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献