Nano Filling Effect of Nonmeat Protein Emulsion on the Rheological Property of Myofibrillar Protein Gel

Author:

Cai Ruying,Yang Zongyun,Li Zhen,Wang PengORCID,Han Minyi,Xu Xinglian

Abstract

Incorporation of vegetable oils through pre-emulsification has received notable attention for delivering polyunsaturated fatty acids to emulsified-type meat products. The two important influencing factors of the rheological property of composite myofibrillar protein (MP) gel are emulsion droplet size and active or inactive interaction between interface and meat proteins. Incorporation of nonmeat protein emulsion (2% protein (w/w), egg-white protein isolate (EPI), porcine plasma protein (PPP), or sodium caseinate (SC)) with different droplet sizes (nano or macro) to a model of 2% MP gel was investigated in this research. The results of drop size measurement showed that 15,000 psi homogenizing could decrease the diameter of emulsion drop from macro- to nanoscale in the range of 324.4–734.5 nm. Active fillers (PPP and EPI emulsions) with nanodroplet size did not influence the viscosity of emulsion-filled composite cold sols but caused positive filling effects on the MP gel matrix after heating, as evidenced by the density microstructure. PPP and EPI nano-emulsion-filled composite MP had a significant high storage modulus enforcement effect, which reached nearly eight times those of other treatments (p < 0.05). Similarly, the results of thermal scanning rheology and a large-deformation mechanical test showed that PPP and EPI emulsions with nanoscale droplets, other than macroscale, had the highest gel strength of heat-induced emulsion-filled composite MP gel (p < 0.05). Overall, these findings will be helpful for selecting the correct pre-emulsified protein and designing the textural properties of foods.

Funder

National Key Research Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3