Effect of High-Voltage Electrostatic Field Heating on the Oxidative Stability of Duck Oils Containing Diacylglycerol

Author:

Sun Hailei,Li Fangfang,Li Yan,Guo Liping,Wang Baowei,Huang Ming,Huang He,Liu Jiqing,Zhang Congxiang,Feng Zhansheng,Sun Jingxin

Abstract

High-voltage electrostatic field (HVEF) as an emerging green technology is just at the beginning of its use in meat products and by-products processing. In this study, we employed duck oil to produce duck-oil-based diacylglycerol (DAG), termed DDAG. Three different DDAG volume concentrations (0, 20%, and 100%) of hybrid duck oils, named 0%DDAG, 20%DDAG, and 100%DDAG, respectively, were used to investigate their thermal oxidation stability in high-voltage electrostatic field heating and ordinary heating at 180 ± 1 ℃. The results show that the content of saturated fatty acids and trans fatty acids of the three kinds of duck oils increased (p < 0.05), while that of polyunsaturated fatty acids decreased (p < 0.05) from 0 h to 8 h. After heating for 8 h, the low-field nuclear magnetic resonance showed that the transverse relaxation time (T21) of the three oils decreased (p < 0.05), while the peak area ratio (S21) was increased significantly (p < 0.05). The above results indicate that more oxidation products were generated with heating time. The peroxide value, the content of saturated fatty acids, and the S21 increased with more DAG in the duck oil, which suggested that the oxidation stability was likely negatively correlated with the DAG content. Moreover, the peroxide value, the content of saturated fatty acids and trans fatty acids, and the S21 of the three concentrations of duck oils were higher (p < 0.05) under ordinary heating than HVEF heating. It was concluded that HVEF could restrain the speed of the thermal oxidation reaction occurring in the duck oil heating and be applied in heating conditions.

Funder

Shandong Modern Agricultural Technology and Industry System

China Agricultural Research System

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3