Refractometric Detection of Adulterated Milk Based on Multimode Interference Effects

Author:

Fuentes-Rubio Yadira AracelyORCID,Zúñiga-Ávalos Yamil Alejandro,Guzmán-Sepúlveda José RafaelORCID,Domínguez-Cruz René Fernando

Abstract

This paper reports on the refractometric detection of water-adulterated milk using an optical fiber sensor whose principle of operation is based on multimode interference (MMI). The device is manufactured in a simple way by splicing a segment of coreless multimode fiber (NC-MMF) between two single-mode fibers (SMFs); neither functionalization nor deposition of a sensing material is required. MMI takes place in the NC-MMF and, when fed with a broadband spectrum, a transmission peak appears at the output of the MMI device due to its inherent filter-like response, whose position depends on the effective refractive index (RI) of the medium surrounding the NC-MMF. Therefore, when the sensor is immersed in different milk–water mixtures, the peak wavelength shifts according to the RI of the mixture. In this way, adulterated milk can be detected from the wavelength shift of the transmission peak. The system was tested with two commercial brands of milk, and adulterations were clearly distinguished in both cases. In the range of interest, from no dilution up to 50% dilution, the sensor exhibits a linear response with a sensitivity of −0.04251 and −0.03291 nm/%, respectively, for the two samples tested. The measurement protocol is repeatable and allows for locating the peak wavelength within <0.34 nm over several repetitions using different samples with the same concentration. A thermal sensitivity of 0.85 nm/°C was obtained, which suggests that the temperature needs to be maintained as fixed during the measurements. The approach presented can be extended to other scenarios as a quality control tool in beverages for human consumption, showing the advantages of simple construction, high sensitivity, and the potential for real-time monitoring.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Interference-Based Fiber Optic Sensors for Glucose and Moisture Content Detection in Honey;Applied Sciences;2024-09-05

2. A novel refractive index based-fiber optic sensor for milk adulteration detection;Optical Materials;2024-08

3. Optical Fiber Refractive Index Sensor;2024 14th International Conference on Electrical Engineering (ICEENG);2024-05-21

4. Detection of edible oil adulteration using fiber Bragg grating sensor: a fast and accurate approach;Optical Fibers and Sensors for Medical Diagnostics, Treatment, and Environmental Applications XXIV;2024-03-13

5. Investigation of a highly sensitive fiber-optic milk adulteration sensor by shining an airy beam;PROCEEDINGS OF THE 2022 4TH INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3