Effects of Cathepsins on Gel Strength and Water-Holding Capacity of Myofibrillar Protein Gels from Bighead Carp (Aristichthys nobilis) under a Hydroxyl Radical-Generation Oxidizing System

Author:

Lu Han,Liang Yunhong,Zhang Xiangmei,Wen Gang

Abstract

This study investigates the effects of cathepsins on the gel strength and water-holding capacity (WHC) of myofibrillar protein gels from bighead carp (Aristichthys nobilis) under a hydroxyl radical-generation oxidizing system. The myofibrillar proteins were divided into control group (with cathepsins) and E64 group (without cathepsins). The changes of cathepsin B and cathepsin L activities, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), protein oxidation (total sulfhydryl and carbonyl contents), and chemical interactions (nonspecific association, ionic bonds, hydrogen bonds, hydrophobic interactions, and disulfides) of myofibrillar protein and gels, as well as the gel strength and WHC of two groups under 0–100 mM H2O2, were measured. The results indicated that mild oxidation (10 mM H2O2) made a better gel strength and WHC. Cathepsin B and L activities decreased with increasing H2O2 concentrations but their effects on myofibrillar protein degradation still existed during 0.1–50 mM H2O2, which was expressed by higher carbonyl contents and ionic bonds at 0.1 and 50 mM H2O2, higher total sulfhydryl contents at 0 mM H2O2, and a lower intensity of MHC and actin of the control group than the E64 group. Besides more protein degradation, cathepsin proteolysis also resulted in lower gel strength and WHC in control gels than E64 gels under mild oxidation, which could be explained by lower hydrophobic interaction and moderate disulfides bonds between gel protein molecules of control gels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3