Observed Changes in Crop Yield Associated with Droughts Propagation via Natural and Human-Disturbed Agro-Ecological Zones of Pakistan

Author:

Saleem FarhanORCID,Arshad ArfanORCID,Mirchi Ali,Khaliq TasneemORCID,Zeng XiaodongORCID,Rahman Md MasudurORCID,Dilawar AdilORCID,Pham Quoc BaoORCID,Mahmood Kashif

Abstract

Pakistan’s agriculture and food production account for 27% of its overall gross domestic product (GDP). Despite ongoing advances in technology and crop varieties, an imbalance between water availability and demand, combined with robust shifts in drought propagation has negatively affected the agro-ecosystem and environmental conditions. In this study, we examined hydro-meteorological drought propagation and its associated impacts on crop yield across natural and human-disturbed agro-ecological zones (AEZs) in Pakistan. Multisource datasets (i.e., ground observations, reanalysis, and satellites) were used to characterize the most extensive, intense drought episodes from 1981 to 2018 based on the standardized precipitation evaporation index (SPEI), standardized streamflow index (SSFI), standardized surface water storage index (SSWSI), and standardized groundwater storage index (SGWI). The most common and intense drought episodes characterized by SPEI, SSFI, SSWSI, and SGWI were observed in years 1981–1983, 2000–2003, 2005, and 2018. SPEI yielded the maximum number of drought months (90) followed by SSFI (85), SSWSI (75), and SGWI (35). Droughts were frequently longer and had a slower termination rate in the human-disturbed AEZs (e.g., North Irrigated Plain and South Irrigated Plain) compared to natural zones (e.g., Wet Mountains and Northern Dry Mountains). The historical droughts are likely caused by the anomalous large-scale patterns of geopotential height, near-surface air temperature, total precipitation, and prevailing soil moisture conditions. The negative values (<−2) of standardized drought severity index (DSI) observed during the drought episodes (1988, 2000, and 2002) indicated a decline in vegetation growth and yield of major crops such as sugarcane, maize, wheat, cotton, and rice. A large number of low-yield years (SYRI ≤ −1.5) were recorded for sugarcane and maize (10 years), followed by rice (9 years), wheat (8 years), and cotton (6 years). Maximum crop yield reductions relative to the historic mean (1981–2017) were recorded in 1983 (38% for cotton), 1985 (51% for maize), 1999 (15% for wheat), 2000 (29% for cotton), 2001 (37% for rice), 2002 (21% for rice), and 2004 (32% for maize). The percentage yield losses associated with shifts in SSFI and SSWSI were greater than those in SPEI, likely due to longer drought termination duration and a slower termination rate in the human-disturbed AEZs. The study’s findings will assist policymakers to adopt sustainable agricultural and water management practices, and make climate change adaptation plans to mitigate drought impacts in the study region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3