Estimation of Seaweed Biomass Based on Multispectral UAV in the Intertidal Zone of Gouqi Island

Author:

Chen Jianqu,Li Xunmeng,Wang Kai,Zhang Shouyu,Li Jun

Abstract

UAV remote sensing inversion is an efficient and accurate method for obtaining information on vegetation coverage, biomass and other parameters. It is widely used on forest, grassland and other terrestrial vegetation. However, it is rarely used on aquatic vegetation, especially in intertidal zones and other complex environments. Additionally, it is mainly used for inversion of coverage, and there have been few studies thus far on biomass assessment. In this paper, we applied multispectral UAV aerial photography data to evaluate the biomass of seaweed in an intertidal zone. During the ebb tide, UAV aerial photography and in situ sampling data were collected in the study area. After optimizing the spectral index and performing a multiple linearity test, the spectral parameters were selected as the input of the evaluation model. Combined with two machine learning algorithms, namely random forest (RF) and gradient boosting decision tree (GBDT), the biomasses of three species of seaweed (Ulva pertusa, Sargassum thunbergii and Sargassum fusiforme) in the intertidal zone were assessed. In addition, the input parameters of the machine learning algorithms were optimized by one-way ANOVA and Pearson’s correlation analysis. We propose a method to assess the biomass of intertidal seaweed based on multispectral UAV data combined with statistics and machine learning. The results show that the two machine learning algorithms have different accuracies in terms of biomass evaluation using multispectral images; the gradient boosting decision tree can evaluate the biomass of seaweed in the intertidal zone more accurately.

Funder

China Agriculture Research System

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3