Blue carbon: past, present and future, with emphasis on macroalgae

Author:

Raven John12ORCID

Affiliation:

1. Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DQ, UK

2. Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia

Abstract

Blue carbon did not originally include macroalgal ecosystems; however evidence is mounting that macroalgal ecosystems function in marine carbon sequestration. The great majority of present day marine macroalgal net primary productivity (NPP) involves haptophytic algae on eroding shores. For these organisms the long-term storage of particulate organic carbon involves export from the site of production of biomass that has evaded parasites and grazers, and that some of the exported biomass is sedimented and stored rather than being mineralized en route by detritivores (microbes and fauna). Export from eroding shores, and subsequent storage, of haptophytic marine macroalgal particulate organic carbon could have started by 1.6 Ga. Storage on depositing shores close to the site of NPP by rhizophytic macroalgae and then by rhizophytic coastal seagrasses, tidal marshes and mangroves began not less than 209 Ma ago. Future increases in surface ocean temperatures may bring tropical marine macroalgae to their upper temperature limit, while temperate marine macroalgae will migrate poleward, in both cases assuming that temperature increases faster than genetic adaptation to higher temperature. Increased CO 2 in the surface ocean will generally favour uncalcified over calcified marine macroalgae. This results in decreased CO 2 release from decreased calcification, as well as decreased ballasting by CaCO 3 of exported particulate organic carbon resulting in decreasing sedimentation. While much more work is needed, the available information suggests that macroalgae play a significant role in marine organic carbon storage.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3