Online Sparse DOA Estimation Based on Sub–Aperture Recursive LASSO for TDM–MIMO Radar

Author:

Luo JiaweiORCID,Zhang Yongwei,Yang Jianyu,Zhang Donghui,Zhang YongchaoORCID,Zhang YinORCID,Huang Yulin,Jakobsson AndreasORCID

Abstract

The least absolute shrinkage and selection operator (LASSO) algorithm is a promising method for sparse source location in time–division multiplexing (TDM) multiple–input, multiple–output (MIMO) radar systems, with notable performance gains in regard to resolution enhancement and side lobe suppression. However, the current batch LASSO algorithm suffers from high–computational complexity when dealing with massive TDM–MIMO observations, due to high–dimensional matrix operations and the large number of iterations. In this paper, an online LASSO method is proposed for efficient direction–of–arrival (DOA) estimation of the TDM–MIMO radar based on the receiving features of the sub–aperture data blocks. This method recursively refines the location parameters for each receive (RX) block observation that becomes available sequentially in time. Compared with the conventional batch LASSO method, the proposed online DOA method makes full use of the TDM–MIMO reception time to improve the real–time performance. Additionally, it allows for much less iterations, avoiding high–dimensional matrix operations, allowing the computational complexity to be reduced from OK3 to OK2. Simulated and real–data results demonstrate the superiority and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3