Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest

Author:

Liu WangcaiORCID,Zhang Yi,Liang Yiwen,Sun Pingping,Li Yuanxi,Su XiaojunORCID,Wang Aijie,Meng XingminORCID

Abstract

Landslide risk assessment is important for risk management and loss–damage reduction. Herein, we assessed landslide susceptibility, hazard, and risk in the urban area of Yan’an City, which is located on the Loess Plateau of China and affected by many loess landslides. Based on 1841 slope units mapped in the study area, a random forest machine learning classifier and eight environmental factors influencing landslides were used for a landslide susceptibility assessment. In addition, differential synthetic aperture radar interferometry (DInSAR) technology was used for a hazard assessment. The accuracy of the random forest is 0.903 and the area under the receiver operating characteristics (ROC) curve is 0.96. The results show that 16% and 22% of the slope units were classified as being at very high and high-susceptibility levels for landslides, respectively, whereas 16% and 24% of the slope units were at very high and high-hazard levels for landslides, respectively. The landslide risk was obtained based on the susceptibility map and hazard map of landslides. The results show that only 26% of the slope units were located at very high and high-risk levels for landslides and these are mainly concentrated in urban centers. Such risk zones should be taken seriously and their dynamics must be monitored. Our landslide risk map is expected to provide information for planners to help them choose appropriate locations for development schemes and improve integrated geohazard mitigation in Yan’an City.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Young Scientists of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3