Seasonal Dependence of Aerosol Data Assimilation and Forecasting Using Satellite and Ground-Based Observations

Author:

Lee SeungheeORCID,Kim Ganghan,Lee Myong-InORCID,Choi YonghanORCID,Song Chang-KeunORCID,Kim Hyeon-KookORCID

Abstract

This study examines the performance of a data assimilation and forecasting system that simultaneously assimilates satellite aerosol optical depth (AOD) and ground-based PM10 and PM2.5 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The data assimilation case for the surface PM10 and PM2.5 concentrations exhibits a higher consistency with the observed data by showing more correlation coefficients than the no-assimilation case. The data assimilation also shows beneficial impacts on the PM10 and PM2.5 forecasts for South Korea for up to 24 h from the updated initial condition. This study also finds deficiencies in data assimilation and forecasts, as the model shows a pronounced seasonal dependence of forecasting accuracy, on which the seasonal changes in regional atmospheric circulation patterns have a significant impact. In spring, the forecast accuracy decreases due to large uncertainties in natural dust transport from the continent by north-westerlies, while the model performs reasonably well in terms of anthropogenic emission and transport in winter. When the south-westerlies prevail in summer, the forecast accuracy increases with the overall reduction in ambient concentration. The forecasts also show significant accuracy degradation as the lead time increases because of systematic model biases. A simple statistical correction that adjusts the mean and variance of the forecast outputs to resemble those in the observed distribution can maintain the forecast skill at a practically useful level for lead times of more than a day. For a categorical forecast, the skill score of the data assimilation run increased by up to 37% compared to that of the case with no assimilation, and the skill score was further improved by 10% through bias correction.

Funder

the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3