Abstract
This paper studies the periodic solutions of a four-dimensional coupled polynomial system with N-degree homogeneous nonlinearities of which the unperturbed linear system has a center singular point in generalization resonance 1 : n at the origin. Considering arbitrary positive integers n and N with n ≤ N and N ≥ 2 , the new explicit expression of displacement function for the four-dimensional system is detected by introducing the technique on power trigonometric integrals. Then some precise and detailed results in comparison with the existing works, including the existence condition, the exact number, and the parameter control conditions of periodic solutions, are obtained, which can provide a new theoretical description and mechanism explanation for the phenomena of emergence and disappearance of periodic solutions. Results obtained in this paper improve certain existing results under some parameter conditions and can be extensively used in engineering applications. To verify the applicability and availability of the new theoretical results, as an application, the periodic solutions of a circular mesh antenna model are obtained by theoretical method and numerical simulations.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
International Science and Technology Cooperation Programme
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献