Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in $$(m+4)$$-Dimension

Author:

Quan Tingting,Li Jing,Sun Min,Chen Yongqiang

Abstract

AbstractIn this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in $${\textbf{R}}^{m+4}$$ R m + 4 , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a $$(2+4)$$ ( 2 + 4 ) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient $$p_1.$$ p 1 .

Funder

National Natural Science Foundation of China

National Key R &D Program of China

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. Zhang, Z.F., Li, C.Z.: On the number of limit cycles of a class on quadratic Hamiltonian systems under quadratic perturbations. Adv. Math. 26, 445–460 (1997)

2. Li, J.B.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13, 47–106 (2003)

3. Han, M.A., Li, J.B.: Lower bounds for the Hilbert number of polynomial system. J. Differ. Equ. 252, 3278–3304 (2012)

4. Chen, A.Y., Huang, W.T., Xia, Y.H., Zhang, H.Y.: Estimating the number of zeros of abelian integrals for the perturbed cubic Z4-equivariant planar Hamiltonian system. Int. J. Bifurc. Chaos 33(2350085), 1–21 (2023)

5. Peng, L.P., Feng, Z.S.: Bifurcation of limit cycles from quartic isochronous systems. Electron. J. Differ. Equ. 95, 1–14 (2014)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3