Differential Metabolite Accumulation in Different Tissues of Gleditsia sinensis under Water Stress and Rehydration Conditions

Author:

Liu Jia,Kang Rui,Liu Yang,Wu Ke-Xin,Yan Xue,Song Ying,Pan Li-Ben,Tang Zhong-HuaORCID

Abstract

Gleditsia sinensis Lam. is a woody species that can tolerate various drought conditions and has been widely used in all aspects of life, including medicine, food, cleaning products, and landscaping. However, few reports have focused on the regulatory mechanism of the drought response in G. sinensis. To understand the metabolic basis of the Gleditsia sinensis drought response, different tissues were subjected to a rehydration/dehydration treatment and subsequently analyzed using untargeted and targeted metabolomics profiling depending on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass (LC-MS) analytical platforms, respectively. Eight sugars, twelve amino acids, and twenty phenolic compounds were characterized. Metabolites showing a significant increase or decrease under drought stress were considered to be the key metabolites of interest for a better understanding of the drought tolerance mechanisms. The GC-MS-identified compounds were shown to undergo tissue-specific regulation in response to drought stress. Moreover, the C6C3C6 and C6C3 structures were identified by LC-MS as phenolic metabolites, which revealed their drought-response association. Significant physiological parameters were measured, including overall plant development, and the results showed that antioxidant systems could not be completely restored, but photosynthetic parameters could be recovered. The results of this research provide insight into biochemical component information mechanism of drought resistance in G. sinensis.

Funder

Central Universities in China

China Postdoctoral Science Foundation

Heilongjiang Provincial Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3