Improving Radar-Based Rainfall Forecasts by Long Short-Term Memory Network in Urban Basins

Author:

Nguyen Duc HaiORCID,Kim Jeong-BaeORCID,Bae Deg-HyoORCID

Abstract

Radar-based rainfall forecasts are widely used extrapolation algorithms that are popular in systems of precipitation for predicting up to six hours in lead time. Nevertheless, the reliability of rainfall forecasts gradually declines for heavy rain events with lead time due to the lack of predictability. Recently, data-driven approaches were commonly implemented in hydrological problems. In this research, the data-driven models were developed based on the data obtained from a radar forecasting system named McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE) and ground rain gauges. The data included thirteen urban stations in the five metropolitan cities located in South Korea. The twenty-five data points of MAPLE surrounding each rain station were utilized as the model input, and the observed rainfall at the corresponding gauges were used as the model output. The results showed superior capabilities of long short-term memory (LSTM) network in improving 180-min rainfall forecasts at the stations based on a comparison of five different data-driven models, including multiple linear regression (MLR), multivariate adaptive regression splines (MARS), multi-layer perceptron (MLP), basic recurrent neural network (RNN), and LSTM. Although the model still produced an underestimation of extreme rainfall values at some examined stations, this study proved that the LSTM could provide reliable performance. This model can be an optional method for improving rainfall forecasts at the stations for urban basins.

Funder

KOREA HYDRO & NUCLEAR POWER CO., LTD

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3