Using a 10-Year Radar Archive for Nowcasting Precipitation Growth and Decay: A Probabilistic Machine Learning Approach

Author:

Foresti Loris1,Sideris Ioannis V.1,Nerini Daniele2,Beusch Lea3,Germann Urs4

Affiliation:

1. Federal Office of Meteorology and Climatology, MeteoSwiss, Locarno-Monti, Switzerland

2. Federal Office of Meteorology and Climatology, MeteoSwiss, Locarno-Monti, and Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

3. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

4. Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland

Abstract

AbstractMachine learning algorithms are trained on a 10-yr archive of composite weather radar images in the Swiss Alps to nowcast precipitation growth and decay in the next few hours in moving coordinates (Lagrangian frame). The hypothesis of this study is that growth and decay is more predictable in mountainous regions, which represent a potential source of practical predictability by machine learning methods. In this paper, artificial neural networks (ANN) are employed to learn the complex nonlinear dependence relating the growth and decay to the input predictors, which are geographical location, mesoscale motion vectors, freezing level height, and time of the day. The average long-term growth and decay patterns are effectively reproduced by the ANN, which allows exploring their climatology for any combination of predictors. Due to the low intrinsic predictability of growth and decay, its prediction in real time is more challenging, but is substantially improved when adding persistence information to the predictors, more precisely the growth and decay and precipitation intensity in the immediate past. The improvement is considerable in mountainous regions, where, depending on flow direction, the root-mean-square error of ANN predictions can be 20%–30% lower compared with persistence. Because large uncertainty is associated with precipitation forecasting, deterministic machine learning predictions should be coupled with a model for the predictive uncertainty. Therefore, we consider a probabilistic perspective by estimating prediction intervals based on a combination of quantile decision trees and ANNs. The probabilistic framework is an attempt to address the problem of conditional bias, which often characterizes deterministic machine learning predictions obtained by error minimization.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3