Management of Radioactive Waste from HTGR Reactors including Spent TRISO Fuel—State of the Art

Author:

Kiegiel KatarzynaORCID,Herdzik-Koniecko IrenaORCID,Fuks LeonORCID,Zakrzewska-Kołtuniewicz Grażyna

Abstract

In light of the increasing demand for energy sources in the world and the need to meet climate goals set by countries, there is growing global interest in high temperature gas cooled reactors (HTGRs), especially as they are known to be inherently safe nuclear reactors. The safety of HTGRs results, among other, from the nature of the nuclear fuel used in them in the form of coated TRISO particles (tri-structural-isotropic) and the reduction of the total amount of radioactive waste generated. This paper reviews numerous methods used to ensure the sustainable, feasible management and long-term storage of HTGR nuclear waste for the protection of the environment and society. The types of waste generated in the HTGR cycle are presented as well as the methods of their characterization, which are important for long-time storage and final disposal. Two leading nuclear fuel cycle strategies, the once-through cycle (direct disposal or open cycle) and the twice-through cycle (recycling or partially closed cycle), are discussed also in relation to TRISO spent fuel. A short review of the possibilities of treatment of TRISO spent nuclear fuel from HTGR reactors is made.

Funder

The National Centre for Research and Development (NCBiR) in Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference65 articles.

1. Past and present research in europe on the production of nuclear hydrogen with HTGR

2. Research and development on nuclear hydrogen production using HTGR at JAERI

3. Five Years after the Fukushima Daiichi Accident: Nuclear Safety Improvements and Lessons Learnt,2016

4. IAEA Country Nuclear Profile https://cnpp.iaea.org/pages/index.htm

5. German Nuclear Policy Reconsidered: Implications for the Electricity Market

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3