Study of Morphological, Structural, and Strength Properties of Model Prototypes of New Generation TRISO Fuels

Author:

Kenzhina Inesh,Blynskiy Petr,Kozlovskiy ArtemORCID,Begentayev Meiram,Askerbekov Saulet,Zaurbekova Zhanna,Tolenova Aktolkyn

Abstract

The purpose of this work is to characterize the morphological, structural, and strength properties of model prototypes of new-generation TRi-structural ISOtropic particle fuel (TRISO) designed for Generation IV high-temperature gas reactors (HTGR-type). The choice of model structures consisting of inner pyrolytic carbon (I-PyC), silicon carbide (SiC), and outer pyrolytic carbon (O-PyC) as objects of research is motivated by their potential use in creating a new generation of fuel for high-temperature nuclear reactors. To fully assess their full functional value, it is necessary to understand the mechanisms of resistance to external influences, including mechanical, as in the process of operation there may be external factors associated with deformation and leading to the destruction of the surface of fuel structures, which will critically affect the service life. The objective of these studies is to obtain new data on the fuel properties, as well as their resistance to external influences arising from mechanical friction. Such studies are necessary for further tests of this fuel on corrosion and irradiation resistance, as closely as possible to real conditions in the reactor. The research revealed that the study samples have a high degree of resistance to external mechanical influences, due to the high strength of the upper layer consisting of pyrolytic carbon. The presented results of the radiation resistance of TRISO fuel testify to the high resistance of the near-surface layer to high-dose irradiation.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3