An Experimental and Computational Investigation of Tailor-Developed Combustion and Air-Handling System Concepts in a Heavy-Duty Gasoline Compression Ignition Engine

Author:

Zhang Yu,Kumar Praveen,Pei Yuanjiang,Traver Michael,Popuri Sriram

Abstract

This study investigates using tailor-developed combustion and air-handling system concepts to achieve high-efficiency, clean gasoline compression ignition (GCI) combustion, aimed at addressing a future heavy-duty ultralow NOx standard of 0.027 g/kWh at the vehicle tailpipe and the tightening CO2 limits around the world by combining GCI with a cost-effective engine aftertreatment system. The development activities were conducted based on a 15 L heavy-duty diesel engine. By taking an analysis-led design approach, a first-generation (Gen1) GCI engine concept was developed and tested, encompassing tailor-designed piston bowl geometry, fuel spray pattern, and swirl motion paired with a customized, fixed-geometry, two-stage turbocharging system and a high-pressure EGR loop with two-stage cooling. Across four key steady-state operating points, the Gen1 GCI concept demonstrated 85–95% lower smoke and 2–3% better diesel-equivalent gross indicated fuel consumption compared to the diesel baseline at 1 g/kWh engine-out NOx. By upgrading to a Gen2 air-handling concept that was composed of a prototype, single-stage, variable-geometry turbocharger and a less restrictive EGR loop, 1D system-level analysis predicted that the pumping mean effective pressure was reduced by 43–54% and the diesel-equivalent brake-specific fuel consumption was improved by 2–4%, thereby demonstrating the performance enhancement potential of refining the air-handling system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3