Numerical Study on Vortex Structures and Loss Characteristics in a Transonic Turbine with Various Squealer Tips

Author:

Wang Yufan,Zhang WeihaoORCID,Huang Dongming,Jiang Shoumin,Chen Yun

Abstract

Cavity width and height are two key geometric parameters of squealer tips, which could affect the control effect of squealer tips on tip leakage flow (TLF) of gas turbines. To explore the optimal values and the control mechanisms of cavity width and height, various cases with different cavity widths and heights are investigated by solving the steady Reynolds Averaged Navier–Stokes (RANS) equations. In this study, the range of cavity width is 9.2–15.1 τ, and that of cavity height is 1.0–3.5 τ. The results show that the optimal value of cavity height is 2.5–3.0 τ, and that of cavity width is about 10.0–10.5 τ. The small cavity width could restrain the breakdown of tip leakage vortex (TLV) and reduce the extra mixing loss. Both small cavity width and large cavity height could enhance the blocking effect on the TLF, reducing the corresponding mixing loss. However, both of them will inhibit the length of the scraping vortex (SV), which is bad for the control of loss. In addition, large cavity height could reduce the loss inside the clearance, while small cavity width could not. This work could provide a reference for the design of squealer tip.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3