Scalable Precursor-Assisted Synthesis of a High Voltage LiNiyCo1−yPO4 Cathode for Li-Ion Batteries

Author:

Islam Mobinul1ORCID,Ali Ghulam2ORCID,Faizan Muhammad1,Han Daseul1,Ali Basit1,Yun Sua1,Ahmad Haseeb2,Nam Kyung-Wan1ORCID

Affiliation:

1. Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Abstract

A solid-solution cathode of LiCoPO4-LiNiPO4 was investigated as a potential candidate for use with the Li4Ti5O12 (LTO) anode in Li-ion batteries. A pre-synthesized nickel–cobalt hydroxide precursor is mixed with lithium and phosphate sources by wet ball milling, which results in the final product, LiNiyCo1−yPO4 (LNCP) by subsequent heat treatment. Crystal structure and morphology of the product were analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Its XRD patterns show that LNCP is primarily a single-phase compound and has olivine-type XRD patterns similar to its parent compounds, LiCoPO4 and LiNiPO4. Synchrotron X-ray absorption spectroscopy (XAS) analysis, however, indicates that Ni doping in LiCoPO4 is unfavorable because Ni2+ is not actively involved in the electrochemical reaction. Consequently, it reduces the charge storage capability of the LNCP cathode. Additionally, ex situ XRD analysis of cycled electrodes confirms the formation of the electrochemically inactive rock salt-type NiO phase. The discharge capacity of the LNCP cathode is entirely associated with the Co3+/Co2+ redox couple. The electrochemical evaluation demonstrated that the LNCP cathode paired with the LTO anode produced a 3.12 V battery with an energy density of 184 Wh kg−1 based on the cathode mass.

Funder

Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3