Parameter Estimation of Induction Motors using Hybrid GWO-CS Algorithm

Author:

EMİROGLU Selcuk1ORCID

Affiliation:

1. SAKARYA ÜNİVERSİTESİ

Abstract

This study investigates a hybrid algorithm between Grey Wolf Optimization (GWO) and Cuckoo Search (CS) algorithms to find the parameters of induction motors. The parameters of the induction motor have been estimated by using the data supplied by the manufacturer. The problem for parameter estimation of the induction motor is formulated as an optimization problem. Then, the optimization problem is solved by using GWO and hybrid algorithm based on GWO and CS algorithms for the estimation of induction motor parameters. Numerical results show that both algorithms are capable of solving the optimization problem for finding the parameters of induction motor. Also, two algorithms and other algorithms such as Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Shuffled Frog-Leaping Algorithm (SFLA), and Modified Shuffled Frog-Leaping Algorithm (MSFLA) are compared for the problem. The results show that the hybrid GWO-CS algorithm gives a smaller objective value and closer torque value to the manufacturer’s data than the GWO algorithm and several algorithms for motor 1. Hybrid GWO-CS algorithm gives nearly the same results with GWO algorithm for motor 2.

Publisher

Sakarya University Journal of Science

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3