Affiliation:
1. Department of Electrical and Computer Engineering, University of Kashan, Ravand Street, P.O. Box 87317-51167, Kashan, Iran
Abstract
A cost effective off-line method for equivalent circuit parameter estimation of an induction motor using hybrid of genetic algorithm and particle swarm optimization (HGAPSO) is proposed. The HGAPSO inherits the advantages of both genetic algorithm (GA) and particle swarm optimization (PSO). The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the nameplate data or experimental tests. In this paper, the problem formulation uses the starting torque, the full load torque, the maximum torque, and the full load power factor which are normally available from the manufacturer data. The proposed method is used to estimate the stator and rotor resistances, the stator and rotor leakage reactances, and the magnetizing reactance in the steady-state equivalent circuit. The optimization problem is formulated to minimize an objective function containing the error between the estimated and the manufacturer data. The validity of the proposed method is demonstrated for a preset model of induction motor in MATLAB/Simulink. Also, the performance evaluation of the proposed method is carried out by comparison between the results of the HGAPSO, GA, and PSO.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献