Affiliation:
1. Department of Chemical Engineering and Biological Engineering, University of Wisconsin-Madison
Abstract
Chemical engineering is a highly complex interconnected major. Just as chemical engineers have broken complex processes into unit operations, the chemical engineering curriculum has been broken up into courses. The organization of these courses vary among institutions and are based on years of prior teachings and research. Despite this, there have been calls to revaluate the curriculum from both industry and academia. We propose a graph-based representation of curricula in which topics are represented by nodes and topic dependencies are represented by directed edges forming a directed acyclic graph. This enables using graph theory measures and tools to provide formal ways of evaluating a curriculum. Additionally, the abstraction is readily understandable meaning conversations between instructors regarding the curriculum can occur within a department and even across institutions. This abstraction is explained with a simplified curriculum and applied to the undergraduate chemical engineering curriculum at University of Wisconsin-Madison. Highly and lowly connected topics are identified and approaches for grouping the topics into modules are discussed.