Information Acquisition and Seismic Damage Prediction of Masonry Structures in Rural Areas Based on UAV Inclined Photogrammetry

Author:

Kong Chao1ORCID,Petchsasithon Arthit2ORCID

Affiliation:

1. Master student, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

2. Assistant Professor, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

Abstract

Using a novel methodology that integrates incremental dynamic analysis (IDA) and unmanned aerial vehicle positioning (POS) analysis, this study aims to assess the seismic risk of brick structures in rural China. This method can collect a lot of data and accurately anticipate seismic damage by combining UAV oblique photography with IDA analysis. Because rural China has many masonry structures, the project will design unique seismic risk mitigation strategies. High-resolution cameras on Unmanned Aerial Vehicles capture realistic photographs of rural brick buildings. The collected data is carefully examined to reveal architectural and structural elements. The project uses dynamic post-processing software from the CHC Geomatics Office to improve UAV-reference station position accuracy. This program analyzes UAV POS data disparities. The findings allow rural Chinese brick buildings to be assessed for seismic sensitivity during unexpected ground shaking occurrences. UAV tilt-photography reduces manpower and expenditures, improving inquiry efficiency. This combination improves seismic risk response. The IDA and UAV POS analysis are essential for earthquake preparedness and risk mitigation. This data-driven method informs lawmakers, urban planners, and disaster management authorities worldwide, improving earthquake engineering and catastrophe resilience programs. This work improves seismic threat assessment and masonry structure fortification, making earthquake-prone buildings safer. Thus, rural communities benefit from it.

Publisher

International Association for Digital Transformation and Technological Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3