Author:
Sahoo Tapatee,Panackal Harikrishnan,Srinivas Kedukodi Babushri,Kuncham Syam Prasad
Abstract
We consider superfluous elements in a bounded lattice with 0 and 1, and introduce various types of graphs associated with these elements. The notions such as superfluous element graph (S(L)), join intersection graph (JI(L)) in a lattice, and in a distributive lattice, superfluous intersection graph (SI(L)) are defined. Dual atoms play an important role to find connections between the lattice-theoretic properties and those of corresponding graph-theoretic properties. Consequently, we derive some important equivalent conditions of graphs involving the cardinality of dual atoms in a lattice. We provide necessary illustrations and investigate properties such as diameter, girth, and cut vertex of these graphs.
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Numerical Analysis,Algebra and Number Theory,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献