Superfluous ideals of N-groups

Author:

Rajani S.,Tapatee S.,Harikrishnan P.,Kedukodi B. S.,Kuncham S. P.ORCID

Abstract

AbstractWe consider a right nearring N and a module over N (known as, N-group). For an arbitrary ideal (or N-subgroup) $$\varOmega $$ Ω of an N-group G, we define the notions $$\varOmega $$ Ω -superfluous, strictly $$\varOmega $$ Ω -superfluous, g-superfluous ideals of G. We give suitable examples to distinguish between these classes and the existing classes studied in Bhavanari (Proc Japan Acad 61-A:23–25, 1985; Indian J Pure Appl Math 22:633–636, 1991; J Austral Math Soc 57:170–178, 1994), and prove some properties. For a zero-symmetric nearring with 1, we consider a module over a matrix nearring and obtain one-one correspondence between the superfluous ideals of an N-group (over itself) and those of $$M_{n}(N)$$ M n ( N ) -group $$N^{n}$$ N n , where $$M_{n}(N)$$ M n ( N ) is the matrix nearring over N. Furthermore, we define a graph of superfluous ideals of a nearring and prove some properties with necessary examples.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference23 articles.

1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer Verlag, Newyork, Inc (1992)

2. Beyranvand, R., Moradi, F.: Small submodules with respect to an arbitrary submodule. J. Algebra Relat. Top. 3(2), 43–51 (2015)

3. Bhavanari, S.: On modules with finite spanning dimension. Proc. Japan Acad. 61–A, 23–25 (1985)

4. Bhavanari, S.: The injective hull of a module with FGD. Indian J. Pure Appl. Math. 20, 874–883 (1989)

5. Bhavanari, S.: On modules with finite Goldie dimension. J. Ramanujan Math. Soc. 5, 61–75 (1990)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Essential ideal of a matrix nearring and ideal related properties of graphs;Boletim da Sociedade Paranaense de Matemática;2024-05-31

2. Generalized Essential Submodule Graph of an R-module;Springer Proceedings in Mathematics & Statistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3