Classification of News Texts by Categories Using Machine Learning Methods

Author:

KAYAKUŞ Mehmet1ORCID,YİĞİT AÇIKGÖZ Fatma1

Affiliation:

1. AKDENİZ ÜNİVERSİTESİ

Abstract

In parallel with the advances in technology, digital journalism is preferred more than printed journalism day by day. Due to the fast and up-to-date sense of journalism provided by digital journalism and its ubiquitous accessibility features, it is read more by users. In addition to these advantages provided by digital journalism, it also has some difficulties compared to printed journalism. The stage of preparation and delivery of the news to the user requires more technological knowledge and equipment compared to printed journalism. The processes of title selection, text creation, photo selection and determination of the appropriate news category in the preparation phase of the news are designed to be both faster and user-friendly compared to printed publishing. The news created to be presented to the target audience may belong to one or more of different categories such as economy, politics, sports, technology, and health. The inclusion of the news in the appropriate category provides convenience in terms of reaching the right audience and archiving the news correctly. In this study, news texts were classified according to their categories based on the machine learning methods. In the study, news of five newspapers in three different categories were used. Bayesian classifier and decision tree methods were used to classify the news in the dataset including a total of 10.500 news. In the results of the study, it was observed that the Bayesian classifier classified the news more successfully according to their categories.

Publisher

Alphanumeric Journal

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Acı, Ç.İ., Çırak, A. 2019. “Türkçe Haber Metinlerinin Konvolüsyonel Sinir Ağları ve Word2Vec Kullanılarak Sınıflandırılması”, Bilişim Teknolojileri Dergisi, 12(3), 219–228.

2. Adak, M.F., Yurtay, N. 2013. "Gini Algoritmasını Kullanarak Karar Ağacı Oluşturmayı Sağlayan Bir Yazılımın Geliştirilmesi," Internatıonal Journal of Informatics Technologies, 6(3), 1-6.

3. Amasyalı, M.F., Yıldırım, T. 2004. “Otomatik haber metinleri sınıflandırma”, 13. Sinyal İşleme ve Uygulama Kurultayı, 224–226, Kuşadası, Türkiye.

4. Amasyalı, M.F., Beken, A. 2009. “Türkçe Kelimelerin Anlamsal Benzerliklerinin Ölçülmesi ve Metin Sınıflandırmada Kullanılması”, IEEE 17. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Antalya, Türkiye.

5. Amasyalı, M.F., Diri, B., Türkoğlu, F. 2006. “Farklı özellik vektörleri ile Türkçe dokümanların yazarlarının belirlenmesi”, 15th Turkish Symposium on Artificial Intelligence and Neural Network, Muğla, Türkiye.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3