Abstract
Carbon dioxide emissions are an important factor in the increase of greenhouse gases in the atmosphere and climate change. Controlling and reducing carbon dioxide emissions plays an important role in combating global warming and climate change. Various national and international efforts are being carried out to reduce greenhouse gas emissions and switch to sustainable energy sources. For this reason, estimating carbon dioxide emissions in the coming years is important for determining the measures to be taken.
In this study, Turkey's carbon dioxide emissions are successfully estimated using two different machine learning models. The success of the study was evaluated using three different statistical measures: R2, MSE and MAE. The R2 of decision trees was 89.4%, MSE was 0.013 and MAE was 0.011; the R2 of artificial neural networks was 92.7%, MSE was 0.009 and MAE was 0.006. When we compare the two models, it is seen that ANN is more successful than decision trees and predicts with less error.
Publisher
International Journal of Computational and Experimental Science and Engineering
Reference32 articles.
1. Kunt, F. (2007). Hava Kirliliğinin Yapay Sinir Ağları Yöntemiyle Modellenmesi ve Tahmini, Selçuk University Graduate School of Natural and Applied Sciences, M.Sc. Thesis, Environmental Engineering Department, Konya.
2. Aydınlar, B., Güveni H. ve Kırksekiz, S. (2009). Hava Kirliliği ve Modellenmesi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Bölümü Yüksek Lisans Rapor.
3. Alimissis, A., Philippopoulos, K., Tzanis, C.G., and Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models, Atmospheric Environment, 191, 205-213, 2018. DOI: 10.1016/j.atmosenv.2018.07.058
4. Hu, K. & Rahman, A. (2017). HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation From Fixed and Mobile Sensors, IEEE Sensors, 17(11): 3571-3525. DOI: 10.1109/JSEN.2017.2690975
5. Huang, C-J., & Kuo, P-H. (2018). A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities, Sensors
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献