Affiliation:
1. İSTANBUL MEDENİYET ÜNİVERSİTESİ
Abstract
The COVID-19 pandemic is perceived by many to have run its course, and forecasting its progress is no longer a topic of much interest to policymakers and researchers as it once was. Nevertheless, in order to take lessons from this extraordinary two and a half years, it still makes sense to have a critical look at the vast body of literature formed thereon, and perform comprehensive analyses in retrospect. The present study is directed towards that goal. It is distinguished from others by encompassing all of the following features simultaneously: (i) time series of 10 of the most affected countries are considered; (ii) forecasting for two types of periods, namely days and weeks, are analyzed; (iii) a wide range of exponential smoothing, autoregressive integrated moving average, and neural network autoregression models are compared by means of automatic selection procedures; (iv) basic methods for benchmarking purposes as well as mathematical transformations for data adjustment are taken into account; and (v) several test and training data sizes are examined. Our experiments show that the performance of common time series forecasting methods is highly sensitive to parameter selection, bound to deteriorate dramatically as the forecasting horizon extends, and sometimes fails to be better than that of even the simplest alternatives. We contend that the reliableness of time series forecasting of COVID-19, even for a few weeks ahead, is open to debate. Policymakers must exercise extreme caution before they make their decisions utilizing a time series forecast of such pandemics.
Subject
Applied Mathematics,General Mathematics
Reference47 articles.
1. Abbasimehr, H., Paki, R., & Bahrini, A. (2022). A novel approach based on combining deep learning models with statistical methods for COVID-19 time series forecasting. Neural Computing and Applications, 34, 3135–3149. doi:10.1007/s00521-021-06548-9
2. Ahmad, G., Ahmed, F., Rizwan, M. S., Muhammad, J., Fatima, S. H., Ikram, A., & Zeeb, H. (2021). Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases. PLoS ONE, 16. doi:10.1371/journal.pone.0252147
3. Anadolu Agency. (2022). Many countries scrapping COVID-19 restrictions, thanks to high vaccination rates, low case incidence. Many countries scrapping COVID-19 restrictions, thanks to high vaccination rates, low case incidence. https://www.aa.com.tr/en/latest-on-coronavirus-outbreak/many-countries-scrapping-covid-19-restrictions-thanks-to-high-vaccination-rates-low-case-incidence/2500190 adresinden alındı
4. ArunKumar, K. E., Kalaga, D. V., Sai Kumar, C. M., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Averag. Applied Soft Computing, 103. doi:10.1016/j.asoc.2021.107161
5. Aslan, I. H., Demir, M., Wise, M. M., & Lenhart, S. (2022). Modeling COVID-19: Forecasting and analyzing the dynamics of the outbreaks in Hubei and Turkey. Mathematical Methods in the Applied Sciences, 45, 6481–6494. doi:10.1002/mma.8181
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献